Second order axial tensors under 58 BW MPGs Note: If the table is not fully displayed, please jump to the bottom and slide the display bar left and right.
Back to the main page.
MPG M 0 Isomorphic PG G 0 S 0 R ′ G 0 and [ β i j even ] 3 × 3 G 1 and [ β i j odd ] 3 × 3 1 ― ′ (2.3.5) 1 ― 1 1 ― ′ 1 ― β = 0 1 ( β 11 β 12 β 13 β 21 β 22 β 23 β 31 β 32 β 33 ) 9 2 ′ (2// y ) (3.3.8) 2 1 2 010 ′ 2 ( β 11 0 β 13 0 β 22 0 β 31 0 β 33 ) 5 m ( 0 β 12 0 β 21 0 β 23 0 β 32 0 ) 4 m ′ ( m ⊥ y ) (4.3.11) m ( m ⊥ y ) 1 m 010 ′ m ( 0 β 12 0 β 21 0 β 23 0 β 32 0 ) 4 2 ( β 11 0 β 13 0 β 22 0 β 31 0 β 33 ) 5 2 ′ / m (2// y ) (5.3.14) 2 / m m 1 ― ′ 2 / m β = 0 m ( 0 β 12 0 β 21 0 β 23 0 β 32 0 ) 4 2 / m ′ (2// y ) (5.4.15) 2 / m 2 1 ― ′ 2 / m β = 0 2 ( β 11 0 β 13 0 β 22 0 β 31 0 β 33 ) 5 2 ′ / m ′ (2// y ) (5.5.16) 2 / m 1 ― 2 ′ 2 / m β = 0 2 / m β = 0 2 ′ 2 ′ 2 (6.3.19) 222 2 (2// z ) 2 100 ′ 222 ( β 11 0 0 0 β 22 0 0 0 β 33 ) 3 m m 2 ( 0 β 12 0 β 21 0 0 0 0 0 ) 2 m ′ m 2 ′ (7.3.22) m m 2 m ( m ⊥ y ) 2 001 ′ m m 2 ( 0 β 12 0 β 21 0 0 0 0 0 ) 2 2 m m ( 0 0 0 0 0 β 32 0 β 23 0 ) 2 m ′ m ′ 2 (7.4.23) m m 2 2 (2// z ) m 100 ′ m m 2 ( 0 β 12 0 β 21 0 0 0 0 0 ) 2 222 ( β 11 0 0 0 β 22 0 0 0 β 33 ) 3 m m m ′ (8.3.26) m m m m m 2 1 ― ′ m m m β = 0 m m 2 ( 0 β 12 0 β 21 0 0 0 0 0 ) 2 m ′ m ′ m (8.4.27) m m m 2 / m ( 2 / / z ) m 100 ′ m m m β = 0 m m m β = 0 m ′ m ′ m ′ (8.5.28) m m m 222 1 ― ′ m m m β = 0 222 ( β 11 0 0 0 β 22 0 0 0 β 33 ) 3 4 ′ (9.3.31) 4 2 ( 2 / / z ) 4 001 ′ 4 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 4 ― ( β 11 β 21 0 β 21 − β 11 0 0 0 0 ) 2 4 ― ′ (10.3.34) 4 ― 2 ( 2 / / z ) 4 ― 001 ′ 4 ― ( β 11 β 21 0 β 21 − β 11 0 0 0 0 ) 2 4 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 4 ′ / m (11.3.37) 4 / m 2 / m 4 001 ′ 4 / m β = 0 4 / m β = 0 4 / m ′ (11.4.38) 4 / m 4 1 ― ′ 4 / m β = 0 4 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 4 ′ / m ′ (11.5.39) 4 / m 4 ― 1 ― ′ 4 / m β = 0 4 ― ( β 11 β 21 0 β 21 − β 11 0 0 0 0 ) 2 4 ′ 22 ′ (12.3.42) 422 222 4 001 ′ 422 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 3 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 42 ′ 2 ′ (12.4.43) 422 4 2 100 ′ 422 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 3 4 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 4 ′ m ′ m (13.3.46) 4 m m 2 m m 4 001 ′ 4 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 4 m ′ m ′ (13.4.47) 4 m m 4 m 100 ′ 4 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 422 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 3 4 ― ′ 2 ′ m (14.3.50) 4 ― 2 m 2 m m 4 ― ′ 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 4 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 4 ― ′ 2 m ′ (14.4.51) 4 ― 2 m 222 4 ― ′ 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 422 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 3 4 ― 2 ′ m ′ (14.5.52) 4 ― 2 m 4 ― 2 100 ′ 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 4 ― m 2 ( 0 β 12 0 β 12 0 0 0 0 0 ) 1 4 / m ′ m m (15.3.55) 4 / m m m 4 m m 1 ― ′ 4 / m m m β = 0 4 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 4 ′ / m m ′ m (15.4.56) 4 / m m m m m m 4 ― ′ 4 / m m m β = 0 4 / m m m β = 0 4 ′ / m ′ m ′ m (15.5.57) 4 / m m m 4 ― 2 m 1 ― ′ 4 / m m m β = 0 4 ― 2 m ( β 11 0 0 0 − β 11 0 0 0 0 ) 1 4 / m m ′ m ′ (15.6.58) 4 / m m m 4 / m 2 100 ′ 4 / m m m β = 0 4 / m m m β = 0 4 / m ′ m ′ m ′ (15.7.59) 4 / m m m 422 1 ― ′ 4 / m m m β = 0 422 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 3 3 ― ′ (17.3.64) 3 ― 3 1 ― ′ 3 ― β = 0 3 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 32 ′ (18.3.67) 32 3 2 100 ′ 32 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 3 m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 3 m ′ (19.3.70) 3 m 3 m 100 ′ 3 m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 32 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 3 ― ′ m (20.3.73) 3 ― m 3 m 1 ― ′ 3 ― m β = 0 3 m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 3 ― ′ m ′ (20.4.74) 3 ― m 32 1 ― ′ 3 ― m β = 0 32 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 3 ― m ′ (20.5.75) 3 ― m 3 ― 2 100 ′ 3 ― m β = 0 3 ― m β = 0 6 ′ (21.3.78) 6 3 2 ′ 6 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 6 ― β = 0 6 ― ′ (22.3.81) 6 ― 3 m 001 ′ 6 ― β = 0 6 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 6 ′ / m (23.3.84) 6 / m 6 ― 1 ― ′ 6 / m β = 0 6 ― β = 0 6 / m ′ (23.4.85) 6 / m 6 1 ― ′ 6 / m β = 0 6 ( β 11 − β 21 0 β 21 β 11 0 0 0 β 33 ) 3 6 ′ / m ′ (23.5.86) 6 / m 3 ― m 001 ′ 6 / m β = 0 6 / m β = 0 6 ′ 22 ′ (24.3.89) 622 32 2 001 ′ 622 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 6 ― 2 m β = 0 62 ′ 2 ′ (24.4.90) 622 6 2 100 ′ 622 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 6 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 6 ′ m m ′ (25.3.93) 6 m m 3 m 2 001 ′ 6 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 6 ― m 2 β = 0 6 m ′ m ′ (25.4.94) 6 m m 6 m 100 ′ 6 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 622 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 6 ― ′ m ′ 2 (26.3.97) 6 ― m 2 32 m 001 ′ 6 ― m 2 β = 0 622 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 6 ― ′ m 2 ′ (26.4.98) 6 ― m 2 3 m m 001 ′ 6 ― m 2 β = 0 6 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 6 ― m ′ 2 ′ (26.5.99) 6 ― m 2 6 ― m 100 ′ 6 ― m 2 β = 0 6 ― 2 m β = 0 6 / m ′ m m (27.3.102) 6 / m m m 6 m m 1 ― ′ 6 / m m m β = 0 6 m m ( 0 − β 21 0 β 21 0 0 0 0 0 ) 1 6 ′ / m m m ′ (27.4.103) 6 / m m m 6 ― m 2 1 ― ′ 6 / m m m β = 0 6 ― m 2 β = 0 6 ′ / m ′ m m ′ (27.5.104) 6 / m m m 3 ― m 6 001 ′ 6 / m m m β = 0 6 / m m m β = 0 6 / m m ′ m ′ (27.6.105) 6 / m m m 6 / m 2 100 ′ 6 / m m m β = 0 6 / m m m β = 0 6 / m ′ m ′ m ′ (27.7.106) 6 / m m m 622 1 ― ′ 6 / m m m β = 0 622 ( β 11 0 0 0 β 11 0 0 0 β 33 ) 2 m ′ 3 ― ′ (29.3.111) m 3 ― 23 1 ― ′ m 3 ― β = 0 23 ( β 11 0 0 0 β 11 0 0 0 β 11 ) 1 4 ′ 32 ′ (30.3.114) 432 23 4 001 ′ 432 ( β 11 0 0 0 β 11 0 0 0 β 11 ) 1 4 ― 3 m β = 0 4 ― ′ 3 m ′ (31.3.117) 4 ― 3 m 23 4 ― 001 ′ 4 ― 3 m β = 0 432 ( β 11 0 0 0 β 11 0 0 0 β 11 ) 1 m ′ 3 ― ′ m (32.3.120) m 3 ― m 4 ― 3 m 1 ― ′ m 3 ― m β = 0 4 ― 3 m β = 0 m 3 ― m ′ (32.4.121) m 3 ― m m 3 ― 4 100 ′ m 3 ― m β = 0 m 3 ― m β = 0 m ′ 3 ― ′ m ′ (32.5.122) m 3 ― m 432 1 ― ′ m 3 ― m β = 0 432 ( β 11 0 0 0 β 11 0 0 0 β 11 ) 1
Jump to the top. Back to the main page.
Notes:
Axial tensor is even under the inversion operation. This kind of tensor is suitable for circular photogalvanic effect (CPGE), Edelstein effect, magnetoelectric effect.
The subscript number of the tensor means the independent element number.
Reference : Classification of second harmonic generation effect in magnetically ordered materials | npj Quantum Materials (nature.com)